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Eye Tracking meets EEG
Cognitive load and conscious perception represent two fundamental components of human cognition that underlie attention, 

decision-making, learning, and awareness. The ability to precisely measure and monitor these internal states has broad relevance 

in numerous domains, including neuroergonomics, education, human-computer interaction, and immersive technologies. Despite 

advances in neuroscience and behavioral research, reliably quantifying these constructs outside controlled laboratory settings 

remains a considerable challenge.

In this context, SOMAREALITY has developed two proprietary biomarkers derived from high-resolution eye-tracking data. The 

Cognitive Load (CL) biomarker leverages a combination of pupil dilation, gaze stability, and other ocular features to estimate 

mental workload in real-time. The Conscious Perception Index (CPI) quantifies the likelihood that an external event has been 

consciously perceived, based on gaze responses, reaction latencies, and pupillary shifts.

These biomarkers are designed to operate in real-time, offering lightweight cognitive state monitoring that can be deployed 

across research, education, training, and industrial applications. However, to be accepted as valid alternatives to traditional 

neurophysiological measures, they must show empirical convergence with established neural markers. Specifically, the CL 

biomarker should align with frontal theta increases and parietal alpha suppression, while the CPI biomarker should correspond 

with increases in fronto-parietal coherence during consciously perceived events.

Cognitive load (CL) refers to the demands placed on working 

memory and executive functions during task performance [1, 

2]. As task complexity increases, so does the effort required 

to process, store, and manipulate relevant information. 

This relationship is reflected in robust neurophysiological 

signatures. Frontal mid-line theta oscillations (4–7 Hz), 

which originate primarily in the anterior cingulate cortex, 

have been consistently associated with increased cognitive 

effort, executive control, and working memory maintenance 

[3–5]. Simultaneously, parietal alpha activity (8–12 Hz) 

typically decreases with increased cognitive demand, 

indicating the suppression of irrelevant sensory input and 

heightened attentional engagement [6–8].

Cognitive Load and its 
Neural Correlates

Conscious perception, in contrast to subconscious 

processing, involves the global integration of information 

across distributed cortical areas. According to the Global 

Neuronal Workspace theory [9, 10], a stimulus becomes 

consciously accessible only when it is ”broadcast” 

through recurrent interactions between frontal and 

parietal regions. This cortical ignition is measurable 

through increases in inter-regional EEG coherence or 

phase-locking, particularly between prefrontal and 

parietal sites [11, 12]. Such coherence patterns are 

frequently used as biomarkers of conscious access in 

paradigms involving visual masking, change detection, or 

attentional blink.

Conscious Perception and 
the Global Neuronal Work-

space

Limitations of EEG and the Rise of Eye-Tracking

Although EEG provides high temporal resolution and direct access to neural dynamics, its application outside 

controlled laboratory environments remains constrained by its technical complexity, susceptibility to motion 

artifacts, and the logistical demands of setup and calibration. Moreover, while EEG offers a powerful window into 

neural processes, it often lacks access to the broader behavioral and contextual information that shapes and 

accompanies those processes. For instance, EEG alone cannot easily determine what the participant was attending 

to, where in the visual scene their focus was directed, or how their interaction with the environment unfolded over 

time. These contextual parameters are often inferred post hoc or require elaborate synchronization with external 

measures.

By contrast, eye-tracking offers a compelling and complementary perspective. It is noninvasive, portable, 

and increasingly embedded in consumer technologies such as head-mounted displays (HMDs), tablets, and 

smartphones. More importantly, it provides direct access to visual attention and perceptual engagement as they 

occur within an ecologically valid context. Knowing where a person looked, how long they fixated, when they 

blinked, and how their pupils responded allows for nuanced interpretations of cognitive states, often in real time 

and in naturalistic settings.

Pupillometry, for example, is strongly modulated by activity in the locus coeruleus noradrenergic (LC-NA) system, 

a central neuromodulatory hub associated with arousal, attentional control,and cognitive effort [13, 14]. Increases 

in pupil diameter have been consistently linked to elevated working memory demands, decision uncertainty, and 

mental workload [15]. Similarly, patterns of eye movements - including saccades, fixations, and blinks—have been 

shown to vary systematically with shifts in attentional focus and levels of cognitive engagement [16].

In the domain of conscious perception, eye-tracking reveals distinct behavioral signatures that correlate with 

awareness: consciously detected stimuli tend to elicit prolonged fixations, shorter reaction latencies, and 

enhanced pupillary dilation [17, 18]. These features not only offer indirect but sensitive markers of internal state 

- they also embed those markers within the visual and interactive context from which cognition arises. Thus, 

while EEG excels in capturing rapid neural responses, eye-tracking uniquely situates those responses within the 

perceptual and task-relevant landscape in which they occur.
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Lack of Contextualization
Brain activity alone is often not sufficient to 
create additional value, but requires additional 
context.

Direct Neural Measurement
Captures electrical activity from the brain, providing direct 
insights into cognitive processes.

High Temporal Resolution
Excellent for tracking rapid cognitive changes (milli-
second precision).

Cognitive State Detection
Effective for identifying mental workload, fatigue, 
and emotional states 

Portable Options
Modern wireless EEG systems allow for 
mobile applications.

Poor Spatial Resolution
Difficulty in precisely localizing brain activity.

Signal Noise
Susceptible to artifacts from muscle move-
ments and environmental interference.

Setup Complexity
Requires proper electrode placement and gel 
application.

Combines insights into Cognitive Activities with 
Visual Context
In contrast to EEG, Eye Tracking allows not only insights that 
there is cognitive activity, but also the context where the inter-
action is directed at.

Natural Behavior Measurement
Captures gaze patterns without interfering with tasks.

High Spatial Resolution
Precise tracking of where attention is directed.

Non-Intrusive
Minimal setup required; participants often forget 
they’re being tracked.

Easy Integration
Works well with other technologies (e.g., VR, 
mobile devices).

Ecological Validity
Works well in real-world environments.

Environmental Constraints
Affected by lighting conditions and obstructions.

From EEG ... ... to Eye Tracking

Strengths of Eye TrackingStrengths of EEG

Participant Discomfort
Can be uncomfortable during prolonged use.

Limited Ecological Validity
Requires controlled environments.

+

+

Weaknesses of EEG

+

+

-

-

-

-

-

-

Weaknesses of Eye Tracking

Indirect Measurement
Cannot measure brain activity or cognitive states 

+

+

+

+

+

+

-

-
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Hardware

EEG Integrated 
Eye Tracker

The Bittium NeurOne Tesla is a professional-grade electroencephalography (EEG) system designed for high-
precision neuroscience research and clinical applications. This advanced EEG solution combines state-of-the-art 
hardware with sophisticated software capabilities to provide researchers with a comprehensive tool for brain activity 
measurement and analysis.

Recording Devices

• Bittium NeurOne Tesla EEG System 
with 2 amplifiers: 
- 64 passive electrodes (10-20 
system) 
- Sampling rate: 1 kHz

• PC for the NeurOne EEG record-
ing software and casting the VR 
screen (two monitors necessary 

Technical Specifications

• 64-channel configuration
• Sampling Rate: Up to 5000 Hz per 

channel
• Resolution: 24-bit ADC with 0.029 

μV LSB
• Input Range: ±25 mV (software-se-

lectable)
• Input Impedance: >100 MΩ
• CMRR: >120 dB at 50/60 Hz
• Noise Level: <0.5 μVpp (0.1-100 Hz 

bandwidth)

Recorded Signals

• 64-channel EEG data in BrainVision 
format: 
- Text header file (.vhdr) 
- Test marker file (.vmrk) 
- Binary data file (.eeg)

Recording Devices

• Pico Neo 3 Pro Eye (stand-alone 
HMD) 
- Frame rate: 72 fps 
- Tobii Ocumen (research license) 
for advanced eye-tracking metrics

Technical Specifications

• Accuracy: <0.5° visual angle (typi-
cal)

• Precision: <0.1° RMS
• Latency: <10ms (from gaze detec-

tion to data output)
• Tracking Range: ±20° horizontal, 

±15° vertical
• Calibration: 9-point calibration 

procedure with automatic validation
• Gaze Data Output: Binocular gaze 

points, pupil diameter, eye open-
ness

Recorded Signals

• Eye tracking data: 
- Aware diagnostics files (.awr) 
- CL files (.awr and .csv)

• Event marker files (.csv)
• Change detection markers (.csv)
• Screen recordings (.mp4)

The PICO Neo 3 Pro Eye is an advanced standalone virtual reality (VR) headset with integrated eye-tracking 
technology, designed for professional applications in research, training, and enterprise environments. Building upon 
PICO’s VR platform, the Neo 3 Pro Eye combines high-resolution displays with precise eye-tracking capabilities to 
enable sophisticated gaze-based interactions and cognitive research applications.
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EEG   and eye-tracking data are recorded simultaneously, allowing for direct comparisons across modalities. If strong 
correlations are observed between the CL and CPI biomarkers and their respective EEG counterparts -  frontal theta, 
parietal alpha, and fronto-parietal coherence -  this would provide compelling evidence for the scientific validity of 
these non-invasive, scalable measures. More broadly, such results would demonstrate the feasibility of deploying 
ye-tracking as a tool for cognitive state monitoring in applied research, education, training, and other high-impact 
domains.

Experiment Design

The experimental environment was realized through a custom-built virtual reality (VR) scenario. Participants were 
seated in a virtual room, positioned to face an open window overlooking a street scene, viewing numbered vehicles 
passing by. Behind the street, a detailed urban environment was rendered, featuring a building facade and sidewalk 
populated with various interactive elements such as post boxes, air conditioning systems, windows, or staircases. 
These background elements were programmed to undergo subtle, randomized changes, including alterations in col-
or, disappearance, or reappearance, serving as stimuli for the conscious perception task. 

This study aims to evaluate the degree to which SOMAREALITY’s eye-tracking–based biomarkers replicate well-es-
tablished EEG markers of cognitive load and conscious perception. We present a novel dual-task paradigm conduct-
ed in virtual reality (VR), wherein participants engage in a cognitively demanding task (counting vehicles based on 
number sequences) while observing a dynamic virtual environment in which background elements change. This 
design is intended to elicit both high and low states of cognitive load, as well as variation in conscious perception 
depending on task instructions and participant awareness.

The conducted EEG/eye tracking study involved a total of 20 healthy adult participants with normal or correct-
ed-to-normal vision. Participation was voluntary, and all individuals provided informed consent following institution-
al  ethical guidelines. The sample was balanced in terms of age and gender to ensure generalizability of the results, 
although no formal stratification was employed.
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Experiment Parameters

Primary Task: Modulating Cognitive Load (CL)

To manipulate cognitive load in a controlled manner, participants completed a sequence of five tasks involving the 
monitoring and counting of passing vehicles, each labeled with a digit from 0 to 9. Each task introduced a specific set 
of rules which vehicles should be counted and how the mental counter should be adjusted. Target stimuli appeared 
less frequently than non-target stimuli to increase difficulty and evoke event-related potentials such as the P300, 
known to reflect decision-making and categorization processes.

Task complexity increased with each subsequent task, based on the following counting rules:

1. Task 1: Count vehicles labeled with the number “5”; increment the counter by one for each occurrence.
2. Task 2: Count vehicles labeled “1” or “3”; increment the counter by one.
3. Task 3: Count vehicles labeled “2”, “4”, or “6”; increment the counter by two.
4. Task 4: Count all even-numbered vehicles; increment by two for each. Subtract one when a vehicle labeled “0” 

appears.
5. Task 5: Count all odd-numbered vehicles; increment by three for each. Subtract two for every “0”.

Each trial lasted 90 seconds. As the complexity of the counting rules and arithmetic operations increased across 
tasks, so did the cognitive demands placed on working memory, executive function, and sustained attention.

Secondary Task: Assessing Conscious Perception (CPI)

Simultaneously, participants were exposed to a series of subtle changes in the background environment designed 
to probe their conscious perception. This secondary task unfolded in two distinct phases to assess both implicit and 
explicit perceptual awareness:

1. Phase 1 (Uninformed): Participants were not informed that visual elements in the background would change. Af-
ter completing all five primary tasks, they were asked retrospectively whether they had noticed any such chang-
es and, if so, to specify during which tasks.

2. Phase 2 (Informed): Participants were explicitly instructed to monitor the environment for changes and to report 
them by pressing a button as soon as they were detected. 

This two-phase structure enabled the differentiation between implicit and explicit detection of environmental 
changes, thus supporting a graded measure of conscious perception.

Experimental Procedure

The experimental session spanned approximately 30 minutes and followed a consistent structure to ensure compa-
rability across participants:

1. Test Run (5 minutes): Participants were introduced to the VR environment and practiced the primary counting 
task.

2. Run 1 (10 minutes): Execution of all five CL tasks under the uninformed condition for CPI (Phase 1).
3. Retrospective Questionnaire (2 minutes): Participants reported whether they noticed any environmental back-

ground changes.
4. Break (3 minutes): A brief pause to minimize fatigue effects and cognitive overload.
5. Run 2 (10 minutes): Repetition of all five CL tasks, this time under the informed condition for CPI (Phase 2). Test Run Phase 1 Questionnaire Break Phase 2
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Eye-Tracking Analysis

Eye-tracking data were split into three main categories of metrics:

• Real-time CL Metrics: Extracted using the Tobii Ocumen SDK during online data acquisition, these metrics cap-
tured dynamic fluctuations in workload-related gaze behavior.

• Extended Gaze Metrics (EGM): The comprehensive analytics framework by SOMAREALITY allows gaze behavior 
and pupillometric data, resulting in  statistical features on fixations, saccades, gaze distributions, etc.

• Conscious Perception Index (CPI): Derived from the EGM framework and built with proprietary algorithms to 
quantify the degree of conscious awareness of the participant while performing the primary and secondary 
tasks.

EEG Analysis

EEG preprocessing was performed using the MNE-Python toolbox. This included bandpass filtering, artifact rejec-
tion via ICA, and segmentation into task-aligned epochs. Spectral analysis focused on power spectral density (PSD) 
within two key frequency bands:

• Theta (4–7 Hz): Associated with working memory, cognitive control, and increased mental workload.
• Alpha (8–13 Hz): Inversely related to mental effort and sensory attention, particularly in posterior regions.

Increasing cognitive demand elicits increased theta power over frontal and central electrodes, alongside a simul-
taneous suppression of alpha power in parietal and occipital regions. Conscious perception was assessed through 
functional connectivity, measured as coherence between prefrontal and parietal regions - an established signature 
of integrative neural processing underlying awareness.

Hypotheses and Analytics  
Approach
Experiment Hypothesis

The experimental paradigm was structured around five hypotheses, each targeting a specific neurocognitive  
dimension:

• Hypothesis 1 (H1): The car-counting task will induce measurable increases in cognitive load, with more complex 
tasks and dual-task conditions (Phase 2) leading to higher CL.

• Hypothesis 2 (H2): CL will be significantly elevated during the viewing of target vehicles, reflecting task engage-
ment and decision-making demands.

• Hypothesis 3 (H3): Background changes that are consciously detected will correspond with higher CPI scores 
than undetected changes.

• Hypothesis 4 (H4): The eye-tracking-based CL biomarker will show a positive correlation with frontal theta pow-
er and a negative correlation with parietal alpha power, and will replicate behavioral differences noted in H2.

• Hypothesis 5 (H5): The EEG-based conscious perception marker will correlate significantly with the CPI bio-
marker derived from eye-tracking data and will replicate detection-related effects predicted in H3. 

Increase in Complexity Increase in Cognitive Load

Non-Target vs. 
Target Objects

Increase in Cognitive Load

Detected Changes Increase in Conscious 
Perception

EEG biomarker Correlation to CL
biomarker

EEG
biomarker

Correlation to
CPI Biomarker

CL

EGM

CPI

(4-7 Hz)

(8-12 Hz)

(13-30 Hz)

(> 30 Hz)

(1-3 Hz)
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Hypothesis 1  - Increasing Cognitive Load with Increasing Task and Phase Diffi-
culty

For the second research question, the study explored is the dependency between target and non-target processing 
and associated cognitive load. This hypothesis posited that CL  will be significantly higher during processing of tar-
get objects since this requires the execution of additional mental tasks.

In this figure, it can be observed how in nearly all cases,  individual participant CL levels were higher when viewing 
target in contrast to non-target cars. This reflects the increased cognitive demand of counting, memorizing, and 
updating target cars.

The aggregated comparison of Cognitive Load comparing the processing of target vs. non-target cars reveals a 
statistically significant increase in CL (p < 0.001) when looking at target cars, thus confirming hypothesis 2.

Results 

One of the aspects this study explored is the dependency between task complexity and required cognitive load. This 
hypothesis posited that CL  will be significantly higher during more complex tasks, reflecting greater amounts of 
cognitive resources being required for the processing.

Analyzing average CL per task and comparing phase 1 and phase 2,  we can observe a drop in CL, likely due to a 
learning effect and environmental adaptation. At Tasks 4 and 5, CL increases again, supporting our hypothesis that 
cognitive load increases with task difficulty.

In a global comparison of the Tasks between Phase 1 and Phase 2, a statistically significant increase in CL    
(p < 0.001) is observed for individual tasks and overall averages, thus confirming hypothesis 1. Although a greater 
difference between tasks was expected, participant feedback suggested that the task difficulty was not sufficiently 
high.

This plot shows an example of a raw CL signal of a phase 2 trial: Event markers show the start and the end of individ-
ual tasks. Background changes are  highlighted with a red cross, and detected changes with a green cross. 

Hypothesis 2  - CL is higher when looking at Target Cars than Non-Target Cars



ET meets EEG16 17

This study examined the relationship between conscious perception and background change detection in a du-
al-task paradigm. This hypothesis posited that detected background changes would elicit significantly higher Con-
scious Perception Index (CPI) scores compared to undetected changes, reflecting greater cognitive processing and 
awareness of visual modifications. 

In the following plots, we present our findings regarding the differential CPI scores associated with detected ver-
sus undetected background changes. These results provide empirical evidence regarding the relationship between 
conscious perception and cognitive processing intensity during visual change detection tasks.

The comparison of the CPI in cases where participants detected background changes with those where they did 
not, shows across all participants, that the conscious detection coincided with higher CPI levels. This suggests that 
conscious perception of changes during tasks adds to cognitive processing.

The grand average comparison shows a statistically significant increase in CPI (p < 0.001) when background 
changes were detected,thus confirming hypothesis 3.

Additionally,further analysis shows performance levels based on detection rates. Participants were split into high 
and low performers using a median split. The results suggest that higher CPI is associated with better detection 
performance.

Results 

This plot shows an example of a CPI signal of a phase 2 trial smoothened with a moving average filter: Event markers 
show the start and the end of individual tasks. Background changes are  highlighted with a red cross, and detected 
changes with a green cross. 

Hypothesis 3  - Detected Background Changes elicit higher CPI than Undetected 
Changes
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Analyzing frontal theta band power of individual participants, looking at target cars elicits a consistently higher pow-
er than looking at non-target cars.

The Grand Average analysis of Frontal Theta Power shows a highly statistically significant increase (p < 0.001) 
when looking at target cars vs. looking at non-target cars which correlates with our CL biomarker results and con-
firms our hypothesis. 

Results 

Hypothesis 4  - EEG features of Cognitive Load correlate with our CL Biomarker

Analyzing the correlation between CL and EEG features,  the plots above display the grand average cross-correlation 
(average over all participants) between our CL biomarker and EEG features. While the first figure shows a positive 
correlation between frontal theta power and CL, the second figure shows a negative correlation between parietal 
alpha power and CL, supporting our hypothesis.

The accuracy shows the level of similarity between the frontal theta band power signal and our CL biomarker signal.
This metric was calculated with the normalized mean squared error (NMSE) between the two signals. A mean accu-
racy of 84.55% was achieved across participants.

In the following, we present the findings from our comprehensive study comparing EEG features and eye-tracking-
based analytics as measures of cognitive load. Our investigation aimed to elucidate the distinct and overlapping 
insights provided by these two methodologies in assessing cognitive states. Analyzing EEG data, we used specific 
neural correlates indicative of varying cognitive load levels, while eye-tracking metrics offered a complementary per-
spective through the SOMAREALITY cognitive load biomarker. This comparative analysis underscores the expres-
siveness and reliability of the eye-tracking based approach in comparison to EEG as a gold standard, and paves the 
way for integrating these methods to achieve a more holistic evaluation of cognitive processes.



ET meets EEG20 21

Coherence of individual participants when comparing detected and undetected background Changes: Detection is 
associated with statistically significantly higher coherence across all participants.

The Grand Average comparison of detected and undetected background changes shows a highly statistically 
significant ( p < 0.01) increase in coherence during background change detections, which correlates with our CPI 
biomarker results and confirms our hypothesis. 

Results 

Hypothesis 5 - EEG Features of Conscious Perception correlate with our CPI 
Biomarker

The correlation between these two sets of biomarkers holds significant promise for unraveling the neural mecha-
nisms underlying conscious perception. By examining how specific EEG patterns align with eye tracking metrics, re-
searchers aim to identify robust biomarkers that can objectively measure and predict levels of conscious awareness. 
This interdisciplinary approach not only enhances our understanding of the neural correlates of consciousness but 
also paves the way for developing innovative diagnostic and therapeutic tools for conditions affecting cognitive and 
perceptual functions. In EEG analysis, conscious perception is indicated by increased coherence between prefrontal 
and parietal regions, meaning, higher coherence reflects stronger connectivity and, thus, greater conscious aware-
ness.

When looking at the average coherence over participants across different frequencies, significant differences be-
tween detected and undetected background changes can be found in the gamma frequency band (> 30 Hz), which 
is associated with task-specific neuronal synchronization.

he Accuracy shows the level of similarity between the coherence (fronto-parietal connectivity) and our CPI 
biomarker signal, combining detected and undetected background changes. The accuracy was calculated with 
the normalized mean squared error (NMSE) between the two signals. A mean accuracy of 70.79% was achieved 
across participants.
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Discussion & Conclusions

Discussion

This study advances the field of applied cognitive neuroscience by demonstrating the feasibility of validating gaze-
based biomarkers against established EEG correlates. The observed alignment between ocular metrics and neural 
signatures not only strengthens the theoretical grounding of SOMAREALITY’s proprietary Cognitive Load (CL) and 
Conscious Perception Index (CPI) algorithms but also underscores the broader potential of eye-tracking for scalable 
cognitive monitoring. 

Importantly, eye-tracking offers contextual richness that EEG alone cannot provide. While EEG captures neural dy-
namics with high temporal precision, it lacks direct information about visual attention targets, environmental inter-
actions, or scene-based context. In contrast, gaze data can reveal precisely where and when attention is directed 
- whether toward a changing object, a relevant stimulus, or a distractor - thus anchoring internal states within con-
crete perceptual events.  This added dimension is particularly advantageous in naturalistic settings such as driving, 
learning, or VR-based simulations, where behavioral context plays a critical role in cognitive interpretation.

Nonetheless, the deployment of gaze-based biomarkers in real-world environments requires careful calibration. 
Ocular metrics can be influenced by lighting conditions, device ergonomics, and inter-individual variability. Future 
research could incorporate cross-context validation studies and explore multi-modal sensor fusion - combining 
eye-tracking with physiological signals such as electrodermal activity (EDA) or heart rate variability (HRV) - to en-
hance robustness and reliability.

Conclusion

By systematically validating SOMAREALITY’s eye-based biomarkers - Cognitive Load (CL) and Conscious Percep-
tion Index (CPI) - against neural markers such as frontal theta power, parietal alpha suppression, and fronto-parietal 
coherence, this study offers empirical support for the use of eye-tracking as a credible proxy for internal cognitive 
states. The findings bridge a critical gap between laboratory-grade neuroscience and scalable, real-world applica-
tions. As a result, they lay the foundation for future adaptive technologies that are both neuro-informed and hu-
man-centered, capable of dynamically responding to user cognition in real time.
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Wired or wireless 

connection (WIFI) for 

live data streaming

Soma Aware SDK for Data 
Processing & Analytics

Enables the analysis of raw eye tracking data 

and provides insights on Cognitive Load 

levels in real-time and via  

extensive offline reports

Integration in processing and 

analytics processes

In-Task Analytics

Complete freedom of motion for 

your Cognitive Load Studies

Green Field Capability

Combination with further SOMA 
biomarkers (Visual Attention, 
Perception, Consciousness)

Contextualization

What you need...

Eye Tracker

Provides pupil dilation levels in real-time with no restrictions to 

movement and minimal intrusiveness.

open access to relevant  

data streams

• pupil dilation

• pupil dilation 

confidence

• world camera image 

(or screen image 

capture) 

Soma Aware SDK provides

AR/VR Headsets 

with integrated 

Eye Tracking

Wearable 

Eye Tracker

Remote 

Eye Tracker

Requirements towards 
Eye Tracker and API

Compatibility with most available 
Eye Trackers

Free Hardware Choice

From the lab into real-world 
applications via compensation of 

environmental brightness

Brightness Compensation

Obtaining expressive, continu-

ous Cognitive Load measures in 
real-time

Real-time Insights
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